Magnetically controlled rotation and torque of uniaxial microactuators for lab-on-a-chip applications.

نویسندگان

  • Andrea Ranzoni
  • Xander J A Janssen
  • Mikhail Ovsyanko
  • Leo J van IJzendoorn
  • Menno W J Prins
چکیده

We demonstrate the controlled rotation and torque generated by uniaxial magnetic microactuators formed by two bound superparamagnetic particles in a fluid. The torque and rotation are precisely controlled by rotating magnetic fields, generated by an external electromagnet or by on-chip current wires. We present the magnetic energy equations and the equations of motion for two-particle microactuators, with contributions from the permanent and induced magnetic moments of the particles. A comparison of theory and experiments allows an estimation of the different moments with accuracy better than 10% across a wide frequency range. At low frequencies and low magnitudes of the applied magnetic field, both the permanent and induced moments of the particles have contributions to the torque. At either high fields or high frequencies, the torque is dominated by the induced moment. The predictability of the torque is highest in the regime of low frequencies and high field, where the torque has a large magnitude and is determined by the magnetic shape anisotropy of the microactuator. A comparison of rotation in bulk fluid and on a chip surface shows an increase of friction by a factor 9 originating from the surface proximity. The detailed understanding of the torque and rotation of two-particle uniaxial magnetic microactuators opens a range of possibilities in lab-on-a-chip applications, such as the actuation of single molecules, fluid mixing in microfluidic chambers, and novel cluster-based assays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Brownian Torque in a Magnetically-Driven Rotating Microsystem

Thermal fluctuations significantly affect the behavior of microscale systems rotating in shear flow, such as microvortexes, microbubbles, rotating micromotors, microactuators and other elements of lab-on-a-chip devices. The influence of Brownian torque on the motion of individual magnetic microparticles in a rotating magnetic field is experimentally determined using optical tweezers. Rotational...

متن کامل

Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality.

The fabrication of a novel microfluidic system, integrated with a set of laser-controlled microactuators on an ePetri on-chip microscopy platform, is presented in this paper. In the fully integrated microfluidic system, a set of novel thermally actuated paraffin-based microactuators, precisely controlled by programmed laser optics, was developed to regulate flow and to provide pumping of liquid...

متن کامل

Magnetically controlled ferromagnetic swimmers

Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromag...

متن کامل

Controlled rotation and translation of spherical particles or living cells by surface acoustic waves.

We show experimental evidence of the acoustically-assisted micromanipulation of small objects like solid particles or blood cells, combining rotation and translation, using high frequency surface acoustic waves. This was obtained from the leakage in a microfluidic channel of two standing waves arranged perpendicularly in a LiNbO3 piezoelectric substrate working at 36.3 MHz. By controlling the p...

متن کامل

Magnetically actuated artificial cilia for optimum mixing performance in microfluidics.

Contemporary lab-chip devices require efficient, high-performance mixing capability. A series of artificial cilia with embedded magnetic particles was fabricated to achieve precise flow manipulation through magnetically driven control. These fabricated structures were actuated in a homogeneous magnetic field generated by a built-in magnetic coil system for various beating cycles inside a microc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2010